
AD-A138 491 CHARACTERIZATION AND SCATTERING OF BOUNDED ULTRASONI C /
BEAMS(U) GEORGETOWN UNIV WASHINOTON DC DEPT OF PHYSICS
T0 NGOC ET AL 16 FER 84 DUOS-02847 N0DS 4-78 C 0584

UN FIED F/D 20/1 N

EEEEE7nssnG lol



1 1.251 120

MICROCOPY RESOLUTION TEST CHART

NjATIQAI B3UREAU OF STANDARDS-]1963-A

_ _ mooklI



OR

II

Office of Naval Research

Contract N00014-78-C-0584

Technical Report No. 7

CHARACTERIZATION AND SCATTERING OF BOUNDED

ULTRASONIC BEAMS

_by

T. D. K. Ngoc, W. G. Mayer, T. H. Neighbors, III

Walter G. Mayer MAR

Principal Investigator
Department of Physics
Georgetown University
Washington, DC 20057

February 1984
As

Approved for Public Release. Distribution Unlimited



7-.

SECURITY CLASSIFICATION QF THIS PAGE nwhen Doe. Entered)
READ INSTRUCTIONS

REPORT DOCMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOV ACCESSION NO. 31 RECIPIENTS CATALOG NUMSER

GUUS-02847 / b-/39
4. TITLE (and Subifle) S. TYPE OF REPORT & PERIOD COVERED

Characterization and Scattering of Technical
Bounded Ultrasonic Beams 1 June 83 - 31 Jan. 84

6. PERFORMING ORG. REPORT NUMUER
TR 7

7. AUTHOR(&) I. CONTRACTOR GRANT NUMER(.)

T.D.K. Ngoc, W.G. Mayer, T.H. Neighbors N00014-78-C-0584/
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

Physics Department, Georgetown University AREA WorK UNIT NUNS

Washington, DC 20057 1248

1!. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research, Code 412 16 February 1984
Arlington, VA 22217 IS. HUMMER OF PAGES

16
14. MONITORING AGENCY N &ME 6 ADORESS(I dJfif., t from Cmroihng Offico) IS. SECURITY CLASS. (t Ithm report)

Unclassified
IS. DECLASSIFICATION/DOWNGRADING

SCHEDULE

IS. OISTRIOuTION STATEMENT (of ils Report)

Approved for public release; distribution unlimited*1 I?. DISTRIUUTION STATEMENT (el the ektrect utere hn Slee.k JIS. II Gfleutmt ker Repart)

Approved for public release; distribution unlimited

1I. SUPPLEMENTARY NOTES

IS. KEY WORDS (Cethwo an reIeres SW It ft a..ern1t1E1IF Mo ft ock n"IP6e,)

ultrasonics, bounded beam, ultrasonic pulses, acousto-optics,
backscattering, reflection at the Rayleigh angle.

20. ABSTRACT (CIontime ai roweo old it It N ONY 41d td0mtt O Sleek N&Sbe)

An acousto-optic method is indicated with which to analyze the
shape of an ultrasonic pulse. A mathematical model is given
which describes a non-Gaussian bounded ultrasonic beam. Exist-
ing reflection formulations are used to predict the existence
of backscattering at flat boundaries at the Rayleigh angle.

DoIIOM173aromo I NVo oOOEI
ANo.. 1473 ocro, OF o WOV oSoL-r, Unclassified

SIX 0102-014- 6011 SECURITY CLASPICA?5 011 IWl PAiS f f



I

This Technical Report consists reprints of papers which have

appeared since July 1983, spons through Office of Naval Re-
search Contract N00014-78-C-0584. The papers deal with some
aspects of ultrasonic beam properties, their mathematical repre-
sentation, and theoretical predictions related to reflection and
scattering. )

'>The first paper deals with an acousto-optic method by which the
frequency contents of a pulsed ultrasonic signal can be deter-
mined without the introduction of a transducer probe whose pre-
sence in the path of the signal might alter the composition or
shape of the pulse.)

' The second paper is concerned with reflection of an ultrasonic
signal at a boundary, particularly with the recently mentioned
possibilities of the existence of backscattering. )

< The third article deals with a method of describing methemati-
cally a bounded beam which is known not to have a Gaussian cross
section, and with the reflected profile of such a non-Gaussian
beam.

Walter G. Mayer
Principal Investigator

Washington, February 1984
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Asymmetric light diffraction by pulsed ultrasonic waves
Thomas H. Neighbors, Ill
Te BDM Copration. 7915 Jones Branch P Ive McLan. Vginia 22102

Walter G. Mayer
Physc DVptment Georeown Unver y Wahngtn DC20057

(Received 29 October 1982; accepted for publication 17 March 1983)

Low-MHz, continuous ultrasonic waves traveling in a transparent medium cause light to be
diffracted into discrete difraction orders when light and sound propagation directions are normal

to each other. When pulsed ultrasonic waves are used the diffraction orders split into secondary
orders which are asymmetric with respect to the central diffraction order. This splitting is derived
and a general expression provided for the intensity as a function of the ultrasonic pulse Fourier
spectra. Examples are provided which demonstrate the degree of asymmetry for an exponential
driving pulse and the convergence to the classic Raman-Nath results when the pulse approaches a
continuous wave.

PACS numbers: 43.35.Sx, 43.20.Bi

INIRODOUCTION vides a direct technique for the relative measurement of the

Optical probing of ultrasonic waves had its origins in ultrasonic pulse amplitude spectra. Second, the splitting of
1932 through the independent observations by Debye and the intensities in the first Raman-Nath diffraction order into
Sears' in Washington and Lucas and Biquard2 in Paris that satellite orders as discussed by Zitter' ° also occurs for the
an ultrasonic beam in a liquid acts like a diffraction grating central, second, third, etc., diffraction orders. A general
when illuminated by normally incident light. In 1935 Ra- expression is provided for the calculation of these intensities.
man and Nath 3- 3 explained these observations by treating Third, the intensity distribution within the diffraction orders
the ultrasonic beam as a moving phase grating. Their theory is asymmetric, i.e., the intensity in the positive mth diffrac-
successfully predicted the diffracted light angular distribu- tion is not equal to the intensity in the negative mth order.
tion and the relative intensities in the diffraction orders as a
function of sound intensity, optical and ultrasonic wave- 1. GENERAL THEORY
lengths, and ultrasonic beam thickness. When a monochromatic light beam of frequency f,

Refinements of the Raman-Nath theory have been wavelength A, and width 2, is nonnafly incident on an ultra-
used to investigate a broad spectrum of theoretical and ex- sonic beam of diameter D, frequencyfo, and wavelength A,
perimental conditions related to light diffraction by ultra- the amplitude distribution of the light in the farfield is given
sound This has ranged from the theoretical investigation Of by the diffraction integral as
light diffraction by Superposed ultrasound by Murty6 to the ta
u'e of optical probing for the investigation of the growth of A(0,t)=CV" e(0-:e)v~x (i)
higher fomronic in fiite amplitude prossve waves by ,
7,nkel and HiedeNuM and Breskel and Hiedemann.8 Where

Hargrove' extended the Raman-Nath theory to include the C = the normalization constant
prediction of the diffraction pattern for arbitrary ultrasonic
waves as illuminated by Gaussian light beams Zitterl0 in 2rf
turn applied this extended theory to light diffraction by sym- k = 2r/IA
metric short ultrasonic pulses. Other extension have includ- 0 = the farteld angle
ed the examination of light modulation by ultioni waves
in the presence of amplitude optical gratings by Caim et ti
ael. 11- 13 0o = 2rfo

Our current interest is prompted by the recent experi- ko = 2./A 0
mental work of Hiusler et al.," which demostrated the
production of structured diffraction patterns by pulsed ul- a-ait- kox,
trasoic waves and provided qualitative veification of the with t~a) representing the phase change in the light wave
pul e diffration theory plesented by Zitter.'0 This paper front due to the ultrasonic wave. For a conanous wave exci-
expands the examination of Raman-Nath diIraction by tation
puled ultrasonic waves to include nonsymmetric puls 00) - vsn), (2)
which ar composed ofmodulated snusokial waves of wave-
leno A0wth apulse mpeition iteval A,,. 3

There three prmary rs ts. Ph%% far a vls ' -v /A
of the pulse Ramen-Nh paramuew, optical probing pro- ddmd n the Ram-Nth puinsir 11400# is th mld-
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mum variation of the media refractive index. For an arbi- it is necessary to take the time average intensity over an in-
trary pulsed ultrasonic wave with functional form f(xJt,) terval r which is long compared to the period of the incident
where t, is the pulse repetition period, v can be expressed in light and at the same time is short compared to the pulse
terms of the Fourier expansion off(x,t,) as repetition rate, i.e.,

t'a)- v, sin(na, + .), (4) l(19to)= I (Ot) dt, w*:.2r ,,. (13)

with Normalizing Eq. (13) to the peak light intensity in the ab-
w, = 2ir/tp sence of an ultrasonic wave, i.e., 0 = 0, v, = 0 for m>0,

a , = -- ,t - k1x yields sin D. s

k,= /v x+

X~~~~/ (I IP RtP +i'ImIcos(m - n)wpto
v = ultrasonic velocity, I q1'PIMi - PRelpimlSi(M 

where a. and 0. are the amplitude and phase of the nth (14)
Fourier component of the pulse. In this caseju is determined which is independent of o. The same results could have been
by the pulse peak amplitude. obtained by incorporating vo into the unperturbed media

Substituting Eq. (4) into Eq. (1) and moving the dc com- index of refraction. Due to the sin x/x term in Eq. (14) the
ponent of ta,) outside of the integral yields: light intensity will exhibit maxima when D,, = 0, i.e., at the

A (8,t) = Ce-e""" ' Io eMn a angles 0,. which satisfy the relationship
r sin 0. = ± m(A/A,). (15)

X Il ew'n"m *-) dx. (5) Equation (15) is the same as the result obtained in continuous
" '1 wave diffraction theory3 except that the diffraction angle is

Using the identity' 0  determined by the ratio of the incident light wavelength to

unp the pulse spatial duration. Setting n = m - 1 and evaluatinge P= J( ,(6) the product (sinD. /12.) (sin 1./1D.) at the angleO0= mA/

the product expression in Eq. (5) can be rewritten as A, indicates that the diffraction orders will start to be resol-vable when (2rlIAp)> 1. Thus as the pulse repetition rate
",(7 incrses and the number of pulses within the illumination

mI .... e""'0  (7) interval increases (i.e., 2mi/I,,~l), (sin,/12,,,)(sinf,,
where J,(e) is the rth order Bessel function and *2, )t_0 for m #n, and the diffraction pattern becomes dis-

crete, i.e.,=" - ... ~snl\
,2- , J(0,t)= (0)= 0) _- (6

xexp( F, m), +...+,,. +...). (8) -+ -- (

with r,(m) = m - 2r2 - nr ..... Substituting Eq. (7) where

into Eq. (5) and performing the integration yields: M()2 + (I, .) 2  Ii'. 12, (17)
I- sin-, with/ being the intensity in the mth diffraction order.A(t) = m . , (9) To illustrate the behavior of the diffracted light intensi-
t .o a n ty as the ultrasonic pulse amplitude increases, IP. can be

with A, v sn 0 and factored into a series of approximate expressions based on
,. =(ksinO-mk,,. (10) successively higher Bessel function products, i.e., J,;

Since the OP. term are complex, Eq. (9) can be rewritten as JJJ,,2; J, JJ,JI,4,J,,J 3 ; etc.

' ((~~'~V os[(a + f,,, + Ao]

-- sin [(aw + ms, t + Ao] I To determine how the didaction order intensities ini.
+ i fV 'uin[(. + ma,)t + 40 tially deveop wec an examine Eq. (17) in the limit that thev.

$n0ame remal i.e., product in 91. of order J,(vc)IJvj or higher

+ O cas[(,. + ,,.,.r + AO] I , (11) vanish. Using this constraint and the relationship
where Re and Im denote the ral and imaginar components, ,+2z .+h.+..,(8

of t.. The liht intnsity is then livn by the squae of in t u he dddttion of h., we Ad dot for m - 0
1s 1- IIto A (0)12.  (12).)1

Toobtindom s MrpM otamt phosadsetor id ifo mj >0,
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It 1j,±1frne±" JA .) J*(20) .~Sad 2 ta
ROM. As the pulse amplitude increases, theJJ, and J2 tams

in OP. begin to contribute and the intensity in the mth dif-
Since 1. -1 , the diffraction pattern is symmetric about fraction order ceases to be solely determined by J(v.) for
the central order. In the very small amplitude limit Iot 1 .0 m > 0. For the central diffiaction order (m = 0) there are no
and ±, -, /4. Thus the intensities in the individual dif- additional terms due to the constraint imposed by Eq. (18)
fraction orders provide a relative measure of the ultrasonic However, for the higher diffraction orders, Le., Iml >0, we
pulse's Fourier amplitude spectra. find that the intensity is given by

RI'-l : ,. =lJ:±, (V,.) "I.,. Jo(V. ) + J2(v,,/2)e ± , J (v " )

+ - ,(v. (±,v.--j±  +  - '  I] JoV,

+ - Jofra) 12, (21)

with the convention that all terms vanish with noninteger sents the second Raman-Nath diffraction order of the m/
summation indices and when the indices of the v, are equal 2th pulse Fourier component. The JJ, and JFL_ 1 summa-
and that the summations and nI products are valid only over tions correspond to the mixing of the contributions of the
positive nonzero index values. The upper sign in the expres- pulse Fourier components, i.e., the sum and difference terms
sion corresponds to the positive diffraction orders and the which result in m,. The resultant farfield diffraction pat-
lower sign corresponds to the negative orders. tern is the superposition of the Raman-Nath diffraction pat-

Since J_, (x) = ( - 1)J,, (x), the second-order terms in terns of the pulse Fourier components and the mixing of
(21), J2(V,,/2) and the two J,J, product expressions, exper- these components as constrained by Eq. (18).
ience a 180' phase shift relative to J(v,) in going from + m In the continuous wave limit all Fourier components of
to - m. If these terms represent a net increase in amplitude v vanish except for the v, which corresponds to the pulse
when added to J,(v,. , there will be a corresponding aet de- fundamental frequency. The resulting intensities
crease when added to J ,(v.). This causes the diffraction 0 =Jo(v); I ± =J (v); and J , =J (v,) correspond
pattern to become asymmetric. to the zero, first, and second Raman-Nath diffraction or-

We can use Eq. (21) to illustrate the mechanisms in- ders.
volved in the growth of the farfleld diffraction pattern. Based The next highest approximation adds JJIJJJ2, and
on Eq. (15), each diffraction order corresponds to a multiple J, terms to the expression for the intensity. In the interest of
of the pulse repetition rate w,. The first term in Eq. (21) brevity only the additions to Eq. (19) and Eq. (21) are shown
represents the first Raman-Nath diffraction order for the with the phase and fI product expressions suppressed. In
mth Fourier component of the pulse. The second term repre- each case the additions are to the terms inside the absolute

value signs. The central order is given by

10 =Eq. (19)+ IJV(.),(, 2 )+J 2(.)r,(V 2 ) }

a- X /IM 2_1._('. +-~, 1V)1V (22)

q

with the convention that all terms vanish with noninteger summation indices and when the indices of the v, are equal and that
the summations are valid only over positive nonzero index values. The change for the higher orders (Iml >0) is given by

I,,,, - q 21+ 1 J±2(VJ±, 1 (v,,, 2 .)+J±fr,.13)+ 7. J±2(Va ,p(VZ.,)+ ZJTZfra)±1fr2.a,)

+ (V.)

+ , J.. ) 4 J ,VO it T(v.. + V(a i9N)I (23)

Ida A. AuL Oft Ant, VWl. 74.4& 1, My ION . MW UWW. . MVSr I WM"1gi iam 149



using the same nventios a were im e on Eq..(21). " w

maintain a constant pha relationship with J,(v.)
in going from +into - m. Asaresult, theasociatedin-
crease ordecrease in amplitude for the +mand -morders
is the same. In the continuous wave limit when all compo-
nets of v vanish except v. the diffracted light intensities
become I0 =Jo(v.); I Jr(V,); I*U =j2v),; ad P
I± * = J 2(v,). These correspond to the zero, rst, Second,
and third Raman-Nath diffraction orders. Higher order
terms will impact on the asymmetry in the diffraction pat-
tern only if the sum of the Besel function orders is even.

II, ANLYTIC EmJT$
This section provides examples of the diffracted light ,JI , ,jwL, ,

intensity distribution as a function of v and the growth and " D

decay of asymmetries within the diffraction pattern. For ii- -,

lustration the exponentially damped sinusoid given by Eq.
(24) is used as the pulse time history. ...........................

t t) = V - s n ,in 4V It { (t) ,

- h (t - 2rk2/aoi)je"k', (24)
whereh (t)is the Heaviside function, j = 2 rfoandk,andk,
determine the pulse decay and repetition rates. In this form a
pulse with k, = 10.0 and k 2 = 30.0 has an e-folding time of
l0ro and a repetition rate of 3Oro where r, = 1/fo. The Four-
ier amplitudesofvarev. = v. witha. = (c2 + b.) ' / 2 and a
c. and b. given by "

c (e. -e-1A sine, +Ce' cost,) ..........................

y. -e'IAsin . +. cse3  / a, I , I

FIG.. (a)P, weamplitmde qmtraforv 1.0, k, = 10,ad k2 = 30.0.(b)

(e- It. sinc. -A4cost. +A Pu.,ae Sm for v= .0.k,= 0.0,.d k - 30.0.

S- A fsin r. - A cosyj A.t/, (26) no satellite orders above the threshold and the pattern is
S2+ . / almost symmetric. The positive and negative diffraction or-

de I , 2 through I± 31 locally follow the asymmetry which
where A = k2/k,, . = 2v1k 2 - n), and y. = 2vjk 2 + 4 existsin theamplitudespectra [Fig. l(a)].Asthepulseampli-
The phase #. is given by arcc°s(c./a.) with the sign of tude increases the second-order sum and difference terms
determined by the quadrant within which c. and b. fall. previously discussed begin to introduce asymmetries into

Figure I illustrates the amplitude and phase spectra of the pattern. At v = 1.0 (Fig. 2(b)] the local asymmetry in the
Eq. (24) whenk=10.0andk=30.0. orfo=3.OMHz satellite orders around 1- 30has decreased at the same time
the spectral components an spaced 100 kHz apar te maxi- that the asymmetry in the satellite orders around 1+3 has
mum amplitude occur at 3.0 Mllz, and the components started to inrae As the second-order terms continue to

above nd below 3.0 MHz are approximately w/2 out of increase in magnitude the pattern becomes locally asymme-
phase with a slight asymmetry in the amplitude spectra tricaround 1- 30 [Fig. 2(c)], the asymmetry between the posi-

tive and negative orders becomes more pronounced, and the
A. Fakd dlkrodo-pIN w satellite orders begin to appear locally about the central or-

Using the spectra presented in Fig. I we can now exa- der. The asymmetry in !,, through l 3 remits from the
mine the growth o t diffraction pattern as a function ofthe J -J, terms in Eq. (2 1) being the sam order of magnitude as
RaIman-Nath parameter. This is shown in Fig. 2 based on J,(v,). As the pulse amplitude continues to increm fig.
Eqs. (22) and (23) for selected values of v with an arbitrary 2(d)] the local asymmetry around the central order decreses
intemnsity cutoffet st0.1%, i.e., IE-3, on the abecissa. In as the asymmetry increases around I* 0 . At v-2. [Fig.
each part of Fl 2, the difliaction orders ae shown with the 2(e)], the number of satellite orders around the central o der
expected rdetiv spatial separation. has increased at the same time that some of the satellite or-

Initially when v - 0.5 (f. 2(a)], the central order has ders about I + have dropped below the intemity threshold.

101 J. Aeum. On Am., V. 74, No. I , My INS T. H. Nseom, U and W. 0. Ma@yw .Lm* tpdtvau 146
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FIG. 3. Contribution ofEqs. (2OH23)tol, through 13oa a function ofvfor FIG. 5. L through 13 as a function of k 1 for v = 2.0 and k2 = 30.0.
k, = 10.0 and k2 = 30.0.

m = 29 the leading terms in the series approximations, Eqs. beyond those presented in Eq. (23) will produce second-or-
(20H23), excluding the phase and H product expressions are der corrections to the intensity over the range of interest. For
J,(V29); J- I(vI)J,(v30); and J_ (v30)J1(V28 )J1(V3 )- At the same v > 1.0, m < 28 or m > 28 become dominated by the product
time the validity of the approximation presented in Fig. 3 terms that correspond to the frequency associated with the
can be gauged by examining the leading terms of the next order. For v above 3.0 higher order approximations
higher series approximations, J.L(v 2)Jl 1(V30W 1 (v29W)(v31) (JJAJ1 1,; J1JJAJI; etc.) will begin to produce first-order
and J.(V 27.1 6(V28 )Jfl(V29)J(voL ,(V31). The associated corrections to the intensity.
magnitudes starting with J(v 29 ) are: .4X 10- 1; 3.2x 10-3; The development of asymmetries in the associated neg-
3.3 X 10- 3 ; 6.1 X 10-'; and 2. X 10', respectively. ative orders is shown in Fig. 4. As expected the contributions

For v = 2.0 and m = 28, the leading terms in the series of the Jj, and J2 terms in Eq (21) which add to 129 (Fig. 3)
expansion for the amplitude are: JA(v 2 s); J- 1(v2 )Jj(v3o); result in an equivalent reduction in 1- 29 (Fig. 4). Concur-
J- j(v3o)J(v 27Wj(v 31 ); J- ,(v3)J- ,(vio)Jj(v2)J(v 3 ); and rently the higher order terms in Eq. (23) produce a reduction
J_ I(v27 Jl(v2@)I,(v2 9)L(V3o f(v3 2). The magnitudes, start- in both the positive and negative order intensities.
ing with JI(v2g), are: 7.8X10-2; 3.2X10- 3; 2.3x10- 3;
6.1 X 10-3; and 9.7x 10- 6, respectively. Based on the ex- C. Continuous wave limit
amination of 129 and 12s it is apparent that J(v., ) for decreas- In the limit that the pulse approaches a continuous
ing m drops in magnitude more rapidly than the leading wave the satellite orders vanish as shown in Fig. 5 for the
terms for the higher approximations. Also, approximations central order (v = 2.0). As k, increases the pulse amplitude

spectra approaches v, = 1.0 for m = 30 and v,, 0.0 for
m * 30. This causes J(v,) to decrease more rapidly than the

SJ_(v.)J(v. ) terms locally around vo. The pattern be-
comes symmetric locally about the central order and then
vanishes as the central order intensity approaches J0(2).

Ill. EXPERIMENTAL RESULTS

,.z To provide qualitative verification of the theory pre-
S sented in Sec. I, an Arenber pulser was used to excite a PZT

- transducer with a short pulse (3.0-MHz fundamental fre-
,.,9 i.- quency). The resulting fardeld diftaction pattern from a se-

-" .quence ofpuhes is shown in Fig. 6 for a pule duration of -4

pta, a repetition rate of - 32#s, and a Raman-Nath parmn-
.eter of - 3.0. As predicted by the theory the spitting occurs

in the central diraction order and local asymmetry appears
around 1!, ,, the order associated with the pulse fudamen-

.o ,3 , ,2 2, 2. sal frequMcy. There a no dicurnable asymmetry for the
00011 -140- mateilite orde about the central onder as would be expected

M0.4uium dsd5*(20HMW1- nl to mshLasanedmoN for v'-3.0 due to the domiance of the IL- j turzn in 14q
brku- lOmik - o(21).
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Theoretical prediction of a backscattering maximum at Rayleigh
angle incidence for a smooth liquid-solid interface
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A numerical integration method for the description of acoustic bounded beams is used to
calculate possible backscattering strength from a smooth liquid-solid interface. It is shown that
the backacattering strength is maximum for Rayleigh angle incidence. The influence of beam
shape and beamwidth on the backscattering strength near the maximum is demonstrated.

PACS numbers: 43.33.Pt, 68.25. + j, 43.20.Bi, 43.20.Fn

INTRODUCTION rithm was initially developed by Ngoc and Mayer' to de-
Recently, an interesting phenomenon associated with scribe acoustic bounded beams reflected from or transmitted

the backscattering of a bounded acoustic beam from a through layered media. As will be shown in the following
smooth liquid-solid interface has been reported. This phen- calculation results, this theoretical analysis is able to de-
omeacn involves the existence of a relative maximum at the scribe the general features of backscattering strength as a
Rayleigh angle incidence when the backscattering strength function of incident angle, including the relative maximum
is measured for various incident angles. First, de Billy, Ad- at the Rayleigh critical angle.
ler, and Quentin' reported on this maximum of backscatter-
ing strength for a water-stainless steel and a water-copper I. THEORY AND COMPUTATIONAL RESULTS
interface. The same authors later considered a more general Following the formulation developed by Ngoc and
scattering geometry and observed2 a relative maximum in Mayer,8 the spectral representation is again invoked to de-
the scattering strength at both backward-scattered and for- scribe the scattered field of an acoustic bounded beam of
ward-scattered Rayleigh angles for a general incident angle. frequency wo incide. --ato a smooth liquid-solid interface at
Indeed, these observations, described as conical reflection, an incident angle 81,
have been qualitatively reported3 earlier by Diachok and
Mayer for the specific case of Rayleigh angle incidence. U(x,z)=(2r) j _ R(k.) V(k)

These experimental results have prompted several theo- k
retical invetigations attempting to explain these phenom- Xexp[ xk. + zk)JI dk,. (I}
ena. Within the context ofspectral representation ofacoustic
bounded beams, Norris extended the Bertoni and Tamir The symbols used in above equation are deied as follows:
analytical procedures' developed for forward reflection, to U(x,z) is the acoustic scattered field in the (xA plane amum-
the backscattering case. In light of the fact that surface ing uniformity in they dimension; k is the wave vector in the
roughne should play a significant role in backacattering liquid; k. and k, are the x and z components of the k vector
measurements, de Dilly and Quentin6 employed the poten- related by k. = (k 2- k)1/2. The quantity R (k )denotes
tial method as described by Welton 7 to evaluate the acoustic the plane-wave refection ooebciet at a liquid-ol inter-

field of a bounded beam scattered fromn a rough liquid-solid face (e.g., see Rd. 8) and V(k. is the Fourier transform ofthe
ntrfae Comparing; their theoretical results with back- incident acoustic bem gliven at the interface, describing the
scattering meaurements on sample with rough interfaces, complex amplitude ofthe constituent pl-e waves that form
de Billy and Quentin showed good agreement for incident the incident beam.
angles of 40' or Iess except that their theory did not account In calculating the scattered sound Ald the integral of
for the reatve maximum observed nea the Rayleigh critical Eq. (1) is interpreted as describing the scattered eld repe-
angle. sented by a superposition ofphane waves having the --- p-e-

The above theoretcal efortsf appear to conirm the amplitude R (k) )V(k., Integrating ftm - k to k implies
belif that the relative maximum of beckacattering strength that contributions to the scattered ld can come hem pme
at Rayleigh angle incidence man be associated with the waves reflected in all directions fom this intufacc To be
baundedam of the aoustic cwre as well as the resonant compatible with most experimental aanememis, tram-
u rce propagation mode corresponding to the Rayleigh dueenoffUnite sineforbothacouticsm-reanddetectorwill
rtcl angle. Under this motivation the present study in- be takm into account in the present stdy. In 1addi ame

tsid to inveate this backatmeri phenommon of a would also like to be able to account for the sp ic pm
moothlquid-scllintehcsaiuzscmnu ericalnt- pattern of the detector in use. The m1sq iury
S io, aildwhm to evalua th ,t1d acoustie iel do.- adopted in the fllowifng cPm Is Ameuratsi in F
sewd by the spctq repesetatoI This numerical ago- 1.1The sorceansd detect rmia bohavbma wifth
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of 2w, are rotate on semicircular paths of radius d. The INIDN ANIKE

icident and detecting angles are defined as 1 and 19,, re FIG. 2. Variation of beckacatterin stregth with besnwidth for a Aite

spectively. The positive direction of these angles is indicated Oauim be 42 MHz incident on a water-stainies steel intafwm.

by the underlying arrows and therefore detection of the
backscattered sound would assume a negative value for ed. Next, the beamwidth is kept constant at the value of 10
For the backscattering geometry, ed = - 0e - mm but the shape of the incident Gaussian profile is varied.

In the backacattering calculations to be presented, the This is achieved by introducing a parameter a in the
incident beam profile is taken to be a finite Gaussian one and expression describing a Gaussian profile,
the detecting transducer is assumed to have a flat response. U. ) = exp, - [(x/aw)l. (3)
The calculations are carried out according to the following
procedure: Setting a = I corresponds to the incident profile used in

(a) For a given 0~, the incident beam profile is first pro- the previous set of calculations. In the present set of calcula-
jected onto the z = 0 interface; dions, the incident beam generated by setting a = 0.5 has a

(b) The projected incident profile is then Fourier trans- narrower profile while a = 2.0 results in a broader profile.
formed to yield V(k.); These incident profiles are illustrated in Fig. 3.

(c) Interaction of individual plane waves ot complex Again, the above computational procedure as applied to
amplitude V(k,,) with the interface is described by the pro- calculate the bacacattering strength versus the incident an-
ductRA (k,,) V(k), which is now entered into the integrand of gle for the three incident profiles shown in Fig. 3. Theresults
Eq. (1); are presented in Fig. 4 where the steady decrease, inter-

(d) The scattered acoustic field at spatial position (x) rupted by a relative maximum near the Rayleigh angle, as
can now be evaluated by an exact numerical lutegration of observed for all of these profiles. T7he most noticeable differ.
Eq. (1) across the surface of the detecting trasducer, which ence among them is that the relative maximum is consider-
can be represented by

Z =On9dd - ) 1.0

d ln O4 - w cos e<x~d sin ef+ wcoga,; (2)

* eThe bsckscatter~nstrength for agiven Od -, is 0.3 /

filly determined from the scattered field calculated across%

thedtnfacein tenmeilngsrby aveaginthem %

according to de selected respoets of the detector.06
Figure 2 presents the fiMs set of computational resultsC

dhwing backisattering strength as a function of incident0.
uob 111w dhrevalues cfbmmwidt,2w - 5, 10. and 20 mm,
withan acostic sore o(2 MIBL Theme ooptatiom 'w
do= for a water-stainles steel interface with the radia di.0
tan d bing 30 mm. The becimcattering strenth curves
showa is ftg 2 exhiblt astead decrease as the incident
aaglebecocmeslawu, with a distinct relative maxinum Po 0.
domned *appouately at the Rylig critica angl which is -as 0to0.
calcle to he M0.6 in thi cae. Near the reltiv Mail

- m w va thati d the maimum peak increases withR~MMX SUM= I
I =w"d sad thu sap of the mzmm is bradued at M. mur ha pn fs* m tb.
the bas ftr smelerf brnowlth. Oussai uS uiu d
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= 1 identified two key parameters that would afect the back-.
100- 0.5 sctern trengh a a function of the incident angle.

EXPERIENTAL These two parameters are beamwidth and profile shape of
I.- the incident beam. It is expected from thi formulation that

-~ other parametersi including response pattern of the detec-
tor and distance of source and/or detector from the inter-

-30 face would also strongly ifluence the backscattering
strength.
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Correspondence

Nonspecular Effects for a Finite Incident Beam Modeled solved numerically by Ngoc and Mayer 131-161. This led to a
by an Even-Ordered Polynomial description of nonspecular reflection and transmission effects

at all incident angles where these effects may occur. The
TRAN D. K. NGOC AND WALTER G. MAYER numerical approach enabled the discovery of nonspecular

effects at the longitudinal critical angle 131 of the liquid-solid
structure and at the between-mode angles ISI of the liquid-

AbattMwt -The rf1ectio of rn-Gaslanme ultrasonic beams, expressed solid-liquid structure in addition to those taking place at the
in terms of nti.ordemd polynomials, is discused and it is shown that at Rayleigh angle and the critical plate-mode angles of the respec-
critical Iongitudinal and Rayleigh anles of incidence deviations from tive structures. It was also able to describe the variation of
the Gauselan profile case occur, varying with the polynomial represta- nonspecular features as the incident beam was steered away
tion chosen. Examples are given foe water-Plexiglas and water-stainless from the critical angles.
steel flat interfaces. The results of these studies provided an adequate under-

standing of the physical processes that underlie the nonspec-
INTRODUCTION ular effects taking place upon reflection from or transmission

through a flat interface. However, a major deficiency of the
Nonspecular reflection and transmission effects of a finite above theoretical models that limits the application of these

sound beam have been investigated I 11-171 for various types effects to practical problems rests with the fact that these
of layered media. Bertoni and Tamir's analysis I I described analyses are all based on the assumption of an incident beam
these effects at the Rayleigh critical angle for a liquid-solid having a Gaussian intensity distribution.
interface. Pitts et al. 121 extended Bertoni and Tamir's ap- In most practical situations where one finds a sound beam
proach to another structure in which a solid plate is immersed incident at an interface, the incident beam profile would in-
in a liquid medium. This approach again was able to describe variably be non-Gausian. This is due to the fact that all acous-
nonspecular effects at the critical plate-mode angles associated tic beams traveling in any kind of medium must be subjected
with Lamb waves of the solid plate. The problem was general- to several mechanisms that will distort the beam patterns 18),
ized to incorporate sound attenuation in the media and was 191. Such mechanisms include, for example, nonlinear Inter-

action, absorption, geometrical diffraction, and dispersion of
Manuscript received November 8, 1982; revised April 26, 1983. This the medium itself. These mechanismswould mmetimucumoe

work was supported by the Office of Naval Research under code 412. the beam pattern produced by the transducer by enhancing
The authors are with the Physics Department. Georgetown Univer- or reducing the side lobes. It is therefore quite desiable to be

sity, Washington, DC 20057. able to understand how an incident bam with sidelobes be-

0018-9S37/83/0700-0276S01.00 0 1983 IEEE
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haves after interacting with an interface. In addition, one INCIDENT PROFILES
would also like to know if sidelobes are generated as part of
nonspecular reflection or transmission of a non-Gaussian inci-
dent beam. As a result one can distinguish the changes in
beam profile due to the nonspecular effects from those pro- 1s / ,
duced by the above-mentioned mechanisms associated with
the medium. 0 I/ \\

In general, the current theoretical models describing non- U N..-

specular effects would become more useful if they allowed for D
treatment of incident beams of an arbitrary intensity distribu- 1 s.s
tion. In this paper, the numerical approach developed for N
Gaussian incident beam will be modified to investigate the T

nonspecular effects for incident beams having an nth-order N 8.8-
spolynomial intensity distribution. The choice of the poly- I I

nomial distribution was motivated by the consideration that T i / ,
polynomial distributions can approximate very well many y O3,

transducers in current use; furthermore, they can be adapted
to be used as basic components to construct an arbitrary in- s.-
tensity distribution. In the following, modifications to the . . 2
theoretical framework will be illustrated and sample nonspec- -? - 1 2
ular reflected beam profiles computed from the modified DIST I e WIDDIT
theory will be presented. Fig. 1. Profile of incident beam represented by zero-ordered poly-

nomial [step functioni (long dashes); 2nd-ordered polynomial (short
THEORETICAL FORMULATION dashes); 4th-ordered polynomial (dash-dot); 6th-ordered polynomial(dash-double dot); and a Gaussian distribution (solid line).

Consider a finite beam bounded in the (x, z) plane and uni-

form in the y-dimension, of angular frequency w = 21rf and where the function erf(x) is defined by
beam width 2w. A spectral representation of such a bounded
beam treats it as a superposition of an infinite number of plane fX

waves having the same frequency but different amplitude and erf(x) = 2/(1r)1/2  exp 1-t 2I dt. (6)
incident at slightly different angles about a central direction
indicated by 0j. Extending the principle of spectral represen- Combination of (3) and (5) gives the normalization constants
tation to a reflected or transmitted bounded beam one can A 2, up to the sixth order as
describe the reflected or transmitted field distribution by A0 = 0.7734,

k i ~ w / w °
A2 - 1.0590,U(x,z)=(2 )' fk-./Io P(k.) V(k.)

- stwo A4 = 1.2132,

exp Ii(xkx + zk:)] dkx , (I) A 6 = 1.3243. (7)

where P(kv) is the plane wave reflection or transmission co- The normalized intensity profiles of the even-ordered
efficient for the layered structure under consideration. As polynomial incident beams and the Gaussian intensity profile
before [5 , V(kx ) is the Fourier transform of the incident are presented in Fig. I for comparison. It is noted that the
field and wo = w/cos 01 and ki - k sin 0j. analysis of the general even-ordered polynomial beams also

The present study investigates an incident beam described covers the special case of a piston source, where n = 0.
by an nth-order polynomial and compares the computational In order to evaluate the reflected or transmitted sound field
results with those for a Gaussian incident beam. Since most from (1), one needs to determine V(k,) from the polynomial
sound beams in practice are symmetric only the even orders of incident profile given by (2). This results in
polynomials are considered. The specific form of the poly- ,, rsin
nomials used to model the incident beam in this study are w 2w e a n a m- b P

taken to be P a
A 2n IlI- (XWo)a n I W we<X <Wo; cogs4

(2)~ *--- 1 for a 0;
10, elsewhere, a q- - a-

where A21, is the normalization constant. In order that re- n rM )P
flected beam profiles calculated for a polynomial-type incident = 2w0  a.e., F
beam can be compared to those for Gaussian beams, A 2 , will M0 L-o mP(2P + 1)!
be normalized according to'I" I"°  ,o.. 0 ,,

AU ,J* [~[: 4 C q -], fora -0. (8)A 2, 11 - (X/wD)21 I dX = I Ug12 dx, (3) wher

EDE where

where U1 (x, 0) is the Gaussian Incident distribution given by a (k, - k') we,

U(x,0) .exp - (x/wo)2 + Lxk). (4) enn - [( l)n I (2m)!I/(m!(n - m)!],

Evaluation of the right-hand side of (3) yields for m - 0. 1, 2,..., ,

I UWe bmp- (-l )P(2m- 2p),, forp -0,1,2, -- ,.,

- IU#I dx =(/2)tA wo ad (%/2), () Cm, - I(-I),*ll/(2m - 2r+OI)!I,12 .
I N~ for=O 12, ,
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Fig. 3. Critical longitudinal angle reflection from a water-Plexiglas flat
interface for a Gaussian incident beam (long dashes-dots); zero-
ordered polynomial (short dashes); 2nd-ordered polynomial (short
dashes-dots); 4th-ordered polynomial (long dashes).

waves as represented by its Fourier transform V2n(a) shows
-0 0 1 2 3 4 contributions from plane waves deviating considerably from

0tItMI AXIs the central direction are quite significant and vary according
Fig. 2. Rayleigh angle reflection from a water-stainless steel flat inter- to sin ca/a or cos a/a. As a result, the trailing field which

face for a Gaussian incident beam (long dash-dot); zero-ordered poly- always exists in the case of a Gaussian incident profile is no
nomial (short dashes); 2nd-ordered polynomial (short dashes-dots); longer present and sidelobes are introduced into the reflected
4th-ordered polynomial (short dashes-double dots); 6th-ordered profiles.
polynomial (long dashes).

CONCLUSION
Evaluation of the integral in (I) to determine the reflected

or transmitted sound field is now possible since V(k,) has The description of a finite incident beam by an even-ordered
been determined and the plane wave reflection or transmission polynomial has been shown to lead to a new nonspecular fea-
coefficient P(k x ) for several layered media is well established ture in the reflected beam profile. The computational results
is ]. predict that upon reflection at the critical angles associated

with layered media, sidelobes will appear in the reflected
COMPUTATIONAL RESULTS profile if the incident beam has a polynomial distribution

The nonspecular effects for an incident beam having an even- instead of a Gaussian one. The present study can form a basis

ordered polynomial profile are illustrated here for the simple for investigations of nonspecular reflection or transmission of

case of a bounded beam reflected from a liquid-solid interface, an incident beam having an arbitrary intensity distribution

Calculations are performed for the Rayleigh critical angle of a which can be modeled through polynomial fitting.

water-stainless steel interface and for the longitudinal critical
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